资源类型

期刊论文 181

年份

2023 37

2022 20

2021 19

2020 13

2019 14

2018 10

2017 12

2016 7

2015 11

2014 7

2013 8

2012 1

2010 1

2009 5

2008 2

2007 4

2005 1

2004 1

2003 2

2002 1

展开 ︾

关键词

电动汽车 3

锂离子电池 3

吸附 2

快速充电 2

电化学储能 2

荷电状态 2

重金属废水 2

G蛋白偶联受体 1

NASICON 1

PEDOT:PSS 1

X射线 1

ZEBRA 电池 1

γ-氨基丁酸A型受体 1

“上限” 1

下一代 1

中性原子量子计算 1

乳液共聚合 1

产品制备 1

亲钠性铋基材料 1

展开 ︾

检索范围:

排序: 展示方式:

Alumina modified sodium vanadate cathode for aqueous zinc-ion batteries

《能源前沿(英文)》   页码 775-781 doi: 10.1007/s11708-023-0902-8

摘要: Aqueous zinc-ion batteries (ZIBs) have great prospects for widespread application in massive scale energy storage. By virtue of the multivalent state, open frame structure and high theoretical specific capacity, vanadium (V)-based compounds are a kind of the most developmental potential cathode materials for ZIBs. However, the slow kinetics caused by low conductivity and the capacity degradation caused by material dissolution still need to be addressed for large-scale applications. Therefore, sodium vanadate Na2V6O16·3H2O (NVO) was chosen as a model material, and was modified with alumina coating through simple mixing and stirring methods. After Al2O3 coating modification, the rate capability and long-cycle stability of Zn//NVO@Al2O3 battery have been significantly improved. The discharge specific capacity of NVO@Al2O3 reach up to 228 mAh/g (at 4 A/g), with a capacity reservation rate of approximately 68% after 1000 cycles, and the Coulombic efficiency (CE) is close to 100%. As a comparison, the capacity reservation rate of Zn//NVO battery is only 27.7%. Its superior electrochemical performance is mainly attributed to the Al2O3 coating layer, which can increase zinc-ion conductivity of the material surface, and to some extent inhibit the dissolution of NVO, making the structure stable and improving the cyclic stability of the material. This paper offers new prospects for the development of cathode coating materials for ZIBs.

关键词: cathodes     aqueous zinc-ion batteries     sodium vanadate     alumina     coating    

Two-dimensional SnS2 nanosheets on Prussian blue template for high performance sodium ion batteries

Glenn J. Sim, Kakui Ma, Zhixiang Huang, Shaozhuan Huang, Ye Wang, Huiying Yang

《化学科学与工程前沿(英文)》 2019年 第13卷 第3期   页码 493-500 doi: 10.1007/s11705-019-1826-z

摘要: Three-dimensional Prussian blue (PB) nanostructures was obtained via a one-step hydrothermal method. Subsequently, two-dimensional tin disulfide (SnS ) nanosheets were grown onto PB through a facile hydrothermal synthesis. The as prepared SnS /PB is further employed as the anode of sodium ion batteries (SIBs). SnS /PB nanoarchitecture delivers a specific capacity of 725.7 mAh∙g at 50 mA∙g . When put through more than 200 cycles, it achieved a stable cycling capacity of 400 mAh∙g at 200 mA∙g . The stable Na storage properties of SnS /PB was attributed to the synergistic effect among the conductive PB carbon, used as the template in this work. These results obtained potentially paves the way for the development of excellent electrochemical performance with stable performance of SIBs.

关键词: Prussian blue     carbon nanocubes     tin disulfide     sodium ion batteries    

钠离子电池工程化——机遇与挑战 Review

赵丽娜, 张腾, 李巍, 李涛, 张隆, 张晓光, 汪志义

《工程(英文)》 2023年 第24卷 第5期   页码 172-183 doi: 10.1016/j.eng.2021.08.032

摘要:

当前,在应对全球能源枯竭与环境恶化之际,可持续且环境友好的可再生能源正迎来重要的发展机遇。以二次电池为代表的电能存储(EES)技术,可实现绿色新能源安全且经济有效的存储和转化,被视为可平抑可再生能源间歇性并实现稳定并网输入的最佳解决方案。钠离子电池(SIB),受益于钠资源的丰富
性及低成本,是下一代大规模电化学存储系统最具应用前景的选择之一。本文详细讨论了锂离子电池(LIB)和钠离子电池在不同应用场景下的主要区别,并描述了当前对钠离子电池的理解。通过比较锂离子电池、铅酸电池(LAB)和钠离子电池之间的技术发展情况,进一步揭示钠离子电池的优势。本文以基于钠离子电池技术所取得的商业化成就为文章亮点,重点介绍了五家钠离子电池企业和相应的钠离子电池产品,以及各自的钠离子电池化学与技术。最后,讨论了下一代钠离子电池商业化的前景与挑战。

关键词: 电化学储能     钠离子电池     商业化     下一代    

Two-phase early prediction method for remaining useful life of lithium-ion batteries based on a neural

《能源前沿(英文)》 doi: 10.1007/s11708-023-0906-4

摘要: Lithium-ion batteries (LIBs) are widely used in transportation, energy storage, and other fields. The prediction of the remaining useful life (RUL) of lithium batteries not only provides a reference for health management but also serves as a basis for assessing the residual value of the battery. In order to improve the prediction accuracy of the RUL of LIBs, a two-phase RUL early prediction method combining neural network and Gaussian process regression (GPR) is proposed. In the initial phase, the features related to the capacity degradation of LIBs are utilized to train the neural network model, which is used to predict the initial cycle lifetime of 124 LIBs. The Pearson coefficient’s two most significant characteristic factors and the predicted normalized lifetime form a 3D space. The Euclidean distance between the test dataset and each cell in the training dataset and validation dataset is calculated, and the shortest distance is considered to have a similar degradation pattern, which is used to determine the initial Dual Exponential Model (DEM). In the second phase, GPR uses the DEM as the initial parameter to predict each test set’s early RUL (ERUL). By testing four batteries under different working conditions, the RMSE of all capacity estimation is less than 1.2%, and the accuracy percentage (AP) of remaining life prediction is more than 98%. Experiments show that the method does not need human intervention and has high prediction accuracy.

关键词: lithium-ion batteries     RUL prediction     double exponential model     neural network     Gaussian process regression (GPR)    

g-CN-coated MnO hollow nanorod cathode for stable aqueous Zn-ion batteries

《化学科学与工程前沿(英文)》 2023年 第17卷 第2期   页码 217-225 doi: 10.1007/s11705-022-2214-7

摘要: Aqueous zinc-ion batteries are attracting considerable attention because of their high safety compared with conventional lithium-ion batteries. Manganese-based materials have been widely developed for zinc-ion batteries cathode owning to their low cost, high security and simple preparation. However, the severe volume expansion and poor stability during charging and discharging limit the further development of manganese-based cathodes. Herein, superior α-MnO2@g-C3N4 was successfully prepared for stable zinc-ion batteries (ZIBs) cathode by introducing g-C3N4 nanosheets. Compared with pure α-MnO2, α-MnO2@g-C3N4 has a specific capacity of 298 mAh·g–1 at 0.1 A·g–1. Even at 1 A·g–1, the α-MnO2@g-C3N4 still retains 100 mAh·g–1 (83.4% retention after 5000 cycles), implying its excellent cycling stability. The α-MnO2@g-C3N4-based cathode has the highest energy density (563 Wh·kg–1) and power energy density (2170 W·kg–1). This work provides new avenues for the development of a wider range of cathode materials for ZIBs.

关键词: α-MnO2 hollow nanorods     g-C3N4     heterojunction     aqueous Zn-ion batteries    

A mini review: Functional nanostructuring with perfectly-ordered anodic aluminum oxide template for energy conversion and storage

Huaping Zhao, Long Liu, Yong Lei

《化学科学与工程前沿(英文)》 2018年 第12卷 第3期   页码 481-493 doi: 10.1007/s11705-018-1707-x

摘要:

Nanostructures have drawn great attentions for functional device applications. Among the various techniques developed for fabricating arrayed nanostructures of functional materials, nanostructuring technique with porous anodic aluminum oxide (AAO) membrane as templates becomes more attractive owing to the superior geometrical characteristics and low-cost preparation process. In this mini review, we summarize our recent progress about functional nanostructuring based on perfectly-ordered AAO membrane to prepare perfectly-ordered nanostructure arrays of functional materials toward constructing high-performance energy conversion and storage devices. By employing the perfectly-ordered AAO membrane as templates, arrayed nanostructures in the form of nanodot, nanorod, nanotube and nanopore have been synthesized over a large area. These as-obtained nanostructure arrays have large specific surface area, high regularity, large-scale implementation, and tunable nanoscale features. All these advanced features enable them to be of great advantage for the performance improvement of energy conversion and storage devices, including photoelectrochemical water splitting cells, supercapacitors, and batteries, etc.

关键词: nanostructuring     perfectly-ordered AAO template     photoelectrochemical water splitting     sodium-ion batteries     supercapacitors    

Review on cellulose paper-based electrodes for sustainable batteries with high energy densities

《化学科学与工程前沿(英文)》 2023年 第17卷 第8期   页码 1010-1027 doi: 10.1007/s11705-023-2307-y

摘要: Powering the future, while maintaining strong socioeconomic growth and a cleaner environment, is going to be one of the biggest challenges faced by mankind nowadays. Thus, there is a transition from the use of fossil fuels to renewable energy sources. Cellulose, the main component of paper, represents a unique type of bio-based building blocks featuring exciting properties: low-cost, hierarchical fibrous structures, hydrophilicity, biocompatible, mechanical flexibility, and renewability, which make it perfect for use in paper-based sustainable energy storage devices. This review focuses on lithium-ion battery application of celluloses with cellulose at different scales, i.e., cellulose microfibers, and nanocellulose, and highlights the new trends in the field. Recent advances and approaches to construct high mass loading paper electrodes toward high energy density batteries are evaluated and the limitations of paper-based cathodes are discussed. This will stimulate the use of natural resources and thereby the development of renewable electric energy systems based on sustainable technologies with low environmental impacts and carbon footprints.

关键词: cellulose     paper electrodes     Li-ion batteries     high energy density    

Highly selective metal recovery from spent lithium-ion batteries through stoichiometric hydrogen ion

Weiguang Lv, Xiaohong Zheng, Li Li, Hongbin Cao, Yi Zhang, Renjie Chen, Hancheng Ou, Fei Kang, Zhi Sun

《化学科学与工程前沿(英文)》 2021年 第15卷 第5期   页码 1243-1256 doi: 10.1007/s11705-020-2029-3

摘要: Spent lithium-ion battery recycling has attracted significant attention because of its importance in regard to the environment and resource importance. Traditional hydrometallurgical methods usually leach all valuable metals and subsequently extract target meals to prepare corresponding materials. However, Li recovery in these processes requires lengthy operational procedures, and the recovery efficiency is low. In this research, we demonstrate a method to selectively recover lithium before the leaching of other elements by introducing a hydrothermal treatment. Approximately 90% of Li is leached from high-Ni layered oxide cathode powders, while consuming a nearly stoichiometric amount of hydrogen ions. With this selective recovery of Li, the transition metals remain as solid residue hydroxides or oxides. Furthermore, the extraction of Li is found to be highly dependent on the content of transition metals in the cathode materials. A high leaching selectivity of Li (>98%) and nearly 95% leaching efficiency of Li can be reached with LiNi Co Mn O . In this case, both the energy and material consumption during the proposed Li recovery is significantly decreased compared to traditional methods; furthermore, the proposed method makes full use of H to leach Li . This research is expected to provide new understanding for selectively recovering metal from secondary resources.

关键词: recycling     spent LIBs     selective recovery     hydrothermal treatment    

A review on the development of electrolytes for lithium-based batteries for low temperature applications

《能源前沿(英文)》 2023年 第17卷 第1期   页码 43-71 doi: 10.1007/s11708-022-0853-5

摘要: The aerospace industry relies heavily on lithium-ion batteries in instrumentation such as satellites and land rovers. This equipment is exposed to extremely low temperatures in space or on the Martian surface. The extremely low temperatures affect the discharge characteristics of the battery and decrease its available working capacity. Various solvents, cosolvents, additives, and salts have been researched to fine tune the conductivity, solvation, and solid-electrolyte interface forming properties of the electrolytes. Several different resistive phenomena have been investigated to precisely determine the most limiting steps during charge and discharge at low temperatures. Longer mission lifespans as well as self-reliance on the chemistry are now highly desirable to allow low temperature performance rather than rely on external heating components. As Martian rovers are equipped with greater instrumentation and demands for greater energy storage rise, new materials also need to be adopted involving next generation lithium-ion chemistry to increase available capacity. With these objectives in mind, tailoring of the electrolyte with higher-capacity materials such as lithium metal and silicon anodes at low temperatures is of high priority. This review paper highlights the progression of electrolyte research for low temperature performance of lithium-ion batteries over the previous several decades.

关键词: electrolyte     lithium-ion     low temperature     aerospace     solid-electrolyte interface    

Enabling nickel ferrocyanide nanoparticles for high-performance ammonium ion storage

《化学科学与工程前沿(英文)》 2023年 第17卷 第2期   页码 226-235 doi: 10.1007/s11705-022-2198-3

摘要: Prussian blue and its analogs are extensively investigated as a cathode for ammonium-ion batteries. However, they often suffer from poor electronic conductivity. Here, we report a Ni2Fe(CN)6/multiwalled carbon nanotube composite electrode material, which is prepared using a simple coprecipitation approach. The obtained material consists of nanoparticles with sizes 30–50 nm and the multiwalled carbon nanotube embedded in it. The existence of multiwalled carbon nanotube ensures that the Ni2Fe(CN)6/multiwalled carbon nanotube composite shows excellent electrochemical performance, achieving a discharge capacity of 55.1 mAh·g–1 at 1 C and 43.2 mAh·g–1 even at 15 C. An increase in the ammonium-ion diffusion coefficient and ionic/electron conductivity based on kinetic investigations accounts for their high performance. Furthermore, detailed ex situ characterizations demonstrate that Ni2Fe(CN)6/multiwalled carbon nanotube composite offers three advantages: negligible lattice expansion during cycling, stable structure, and the reversible redox couple. Therefore, the Ni2Fe(CN)6/multiwalled carbon nanotube composite presents a long cycling life and high rate capacity. Finally, our study reports a desirable material for ammonium-ion batteries and provides a practical approach for improving the electrochemical performance of Prussian blue and its analogs.

关键词: nickel ferrocyanides     NH4+     electrochemistry     Prussian blue     aqueous ammonium ion batteries    

Promoting Si-graphite composite anodes with SWCNT additives for half and NCM811 full lithium ion batteries

Jingning SHAN, Xiaofang YANG, Chao YAN, Yiguang JU, Lin CHEN, Fang ZHAO

《能源前沿(英文)》 2019年 第13卷 第4期   页码 626-635 doi: 10.1007/s11708-019-0650-y

摘要: Single wall carbon nanotube (SWCNT) additives were formulated into µm-Si-graphite composite electrodes and tested in both half cells and full cells with high nickel cathodes. The critical role of small amount of SWCNT addition (0.2 wt%) was found for significantly improving delithiation capacity, first cycle coulombic efficiency (FCE), and capacity retention. Particularly, Si (10 wt%)-graphite electrode exhibits 560 mAh/g delithiation capacity and 92% FCE at 0.2 C during the first charge-discharge cycle, and 91% capacity retention after 50 cycles (0.5 C) in a half cell. Scanning electron microscope (SEM) was used to illustrate the electrode morphology, compositions and promoting function of the SWCNT additives. In addition, full cells assembled with high nickel-NCM811 cathodes and µm-Si-graphite composite anodes were evaluated for the consistence between half and full cell performance, and the consideration for potential commercial application. Finally, criteria to assess Si-containing anodes are proposed and discussed from an industrial perspective.

关键词: lithium-ion battery     Si anode     Si-graphite composite     single wall carbon nanotube (SWCNT)     NCM811    

Ion conduction path in composite solid electrolytes for lithium metal batteries: from polymer rich to

Zhouyu ZHANG, Hao CHEN, Zhenglin HU, Shoubin ZHOU, Lan ZHANG, Jiayan LUO

《能源前沿(英文)》 2022年 第16卷 第5期   页码 706-733 doi: 10.1007/s11708-022-0833-9

摘要: Solid-state electrolytes (SSEs) can address the safety issue of organic electrolyte in rechargeable lithium batteries. Unfortunately, neither polymer nor ceramic SSEs used alone can meet the demand although great progress has been made in the past few years. Composite solid electrolytes (CSEs) composed of flexible polymers and brittle but more conducting ceramics can take advantage of the individual system for solid-state lithium metal batteries (SSLMBs). CSEs can be largely divided into two categories by the mass fraction of the components: “polymer rich” (PR) and “ceramic rich” (CR) systems with different internal structures and electrochemical properties. This review provides a comprehensive and in-depth understanding of recent advances and limitations of both PR and CR electrolytes, with a special focus on the ion conduction path based on polymer-ceramic interaction mechanisms and structural designs of ceramic fillers/frameworks. In addition, it highlights the PR and CR which bring the leverage between the electrochemical property and the mechanical property. Moreover, it further prospects the possible route for future development of CSEs according to their rational design, which is expected to accelerate the practical application of SSLMBs.

关键词: composite solid electrolytes     active filler/framework     ion conduction path     interphase compatibility     multilayer design    

Effect of sodium ions in synthesis of titanium silicalite-1 on its catalytic performance for cyclohexanone

Pengxu YAO,Yaquan WANG,Teng ZHANG,Shuhai WANG,Xiaoxue WU

《化学科学与工程前沿(英文)》 2014年 第8卷 第2期   页码 149-155 doi: 10.1007/s11705-014-1409-y

摘要: Titanium silicalite-1 (TS-1) has been hydrothermally synthesized with tetrapropylammonium hydroxide (TPAOH) as the template in the presence of various amounts of Na , characterized by inductively coupled plasma, X-ray diffraction, scanning electron microscope, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy and ultro-violet-visible spectroscopy and studied in cyclohexanone ammoximation. The characterization results show that with the increase of Na concentration in the synthesis, both the crystal sizes of TS-1and extra framework Ti increase but framework Ti decreases. The addition of Na below 3 mol-% of TPAOH in the synthesis does not influence the catalytic properties with above 98% conversion of cyclohexanone and 99.5% selectivity to cyclohexanone oxime. However, at the concentrations of Na ≥3 mol-% of TPAOH in the synthesis, the catalysts are deactivated faster with the increase of Na addition, which can be attributed to more high molecular weight byproducts deposited in the large TS-1 particles and the loss of the frame-work titanium. The results of this work are of great importance for the industry.

关键词: extra framework Ti     cyclohexanone ammoximation     titanium silicalite-1     sodium ion     crystal size    

A modified pulse charging method for lithium-ion batteries by considering stress evolution, charging

Yanfei ZHAO, Bo LU, Yicheng SONG, Junqian ZHANG

《结构与土木工程前沿(英文)》 2019年 第13卷 第2期   页码 294-302 doi: 10.1007/s11709-018-0460-z

摘要: The stress evolution, total charging time and capacity utilization of pulse charging (PC) method are investigated in this paper. It is found that compared to the conventional constant current (CC) charging method, the PC method can accelerate the charging process but will inevitably cause an increase in stress and a decrease in capacity. The charging speed for PC method can be estimated by the mean current. By introducing stress control, a modified PC method called the PCCC method, which starts with a PC operation followed by a CC operation, is proposed. The PCCC method not only can accelerate charging process but also can avoid the stress raising and capacity loss occurring in the PC method. Furthermore, the optimal pulsed current density and switch time in the PCCC method is also discussed.

关键词: fast charging method     pulse charging     stress evolution     charging time     capacity utilization    

Vanadium oxide cathode with synergistic engineering of calcium-ion intercalation and polyaniline coatingfor high performance zinc-ion batteries

《化学科学与工程前沿(英文)》 2023年 第17卷 第9期   页码 1244-1253 doi: 10.1007/s11705-022-2293-5

摘要: Vanadium oxides as cathode for zinc-ion batteries have attracted much attention because of their high theoretical capacity, flexible layered structure and abundant resources. However, cathodes are susceptible to the collapse of their layered structure and the dissolution of vanadium after repeated long cycles, which worsen their capacities and cycling stabilities. Herein, a synergistic engineering of calcium-ion intercalation and polyaniline coating was developed to achieve the superior electrochemical performance of vanadium pentoxide for zinc-ion batteries. The pre-intercalation of calcium-ion between vanadium pentoxide layers as pillars increase the crystal structure’s stability, while the polyaniline coating on the cathodes improves the conductivity and inhibits the dissolution of vanadium. This synergistic engineering enables that the battery system based-on the polyaniline coated calcium vanadate cathode to deliver a high capacity of 406.4 mAh·g−1 at 1 A·g−1, an ultralong cycle life over 6000 cycles at 10 A·g−1 with 93% capacity retention and high-rate capability. The vanadium oxide cathode with synergistic engineering of calcium-ion intercalation and polyaniline coating was verified to effectively improve the electrochemical performance of zinc-ion batteries.

关键词: zinc-ion battery     CaV8O20     polyaniline coating     synergistic engineering     high capacity     long durability    

标题 作者 时间 类型 操作

Alumina modified sodium vanadate cathode for aqueous zinc-ion batteries

期刊论文

Two-dimensional SnS2 nanosheets on Prussian blue template for high performance sodium ion batteries

Glenn J. Sim, Kakui Ma, Zhixiang Huang, Shaozhuan Huang, Ye Wang, Huiying Yang

期刊论文

钠离子电池工程化——机遇与挑战

赵丽娜, 张腾, 李巍, 李涛, 张隆, 张晓光, 汪志义

期刊论文

Two-phase early prediction method for remaining useful life of lithium-ion batteries based on a neural

期刊论文

g-CN-coated MnO hollow nanorod cathode for stable aqueous Zn-ion batteries

期刊论文

A mini review: Functional nanostructuring with perfectly-ordered anodic aluminum oxide template for energy conversion and storage

Huaping Zhao, Long Liu, Yong Lei

期刊论文

Review on cellulose paper-based electrodes for sustainable batteries with high energy densities

期刊论文

Highly selective metal recovery from spent lithium-ion batteries through stoichiometric hydrogen ion

Weiguang Lv, Xiaohong Zheng, Li Li, Hongbin Cao, Yi Zhang, Renjie Chen, Hancheng Ou, Fei Kang, Zhi Sun

期刊论文

A review on the development of electrolytes for lithium-based batteries for low temperature applications

期刊论文

Enabling nickel ferrocyanide nanoparticles for high-performance ammonium ion storage

期刊论文

Promoting Si-graphite composite anodes with SWCNT additives for half and NCM811 full lithium ion batteries

Jingning SHAN, Xiaofang YANG, Chao YAN, Yiguang JU, Lin CHEN, Fang ZHAO

期刊论文

Ion conduction path in composite solid electrolytes for lithium metal batteries: from polymer rich to

Zhouyu ZHANG, Hao CHEN, Zhenglin HU, Shoubin ZHOU, Lan ZHANG, Jiayan LUO

期刊论文

Effect of sodium ions in synthesis of titanium silicalite-1 on its catalytic performance for cyclohexanone

Pengxu YAO,Yaquan WANG,Teng ZHANG,Shuhai WANG,Xiaoxue WU

期刊论文

A modified pulse charging method for lithium-ion batteries by considering stress evolution, charging

Yanfei ZHAO, Bo LU, Yicheng SONG, Junqian ZHANG

期刊论文

Vanadium oxide cathode with synergistic engineering of calcium-ion intercalation and polyaniline coatingfor high performance zinc-ion batteries

期刊论文